Ranking (as of 2014-06-18): 69 out of 874
Language: C++
/*
UVa 11733 - Airports
To build using Visual Studio 2012:
cl -EHsc -O2 UVa_11733_Airports.cpp
*/
#include <algorithm>
#include <cstdio>
using namespace std;
const int n_max = 10000, m_max = 100000;
class union_find {
public:
void init(int n);
int find(int i) const;
int do_union(int i, int j);
// generate the union of the two sets to which i and j belong and
// return the representative of the result set
int nr_sets() const {return s_;}
private:
int n_; // number of elements
int s_; // number of sets
int representatives_[n_max];
// representatives[i] is the representative of a set to which i belongs
int ranks_[n_max];
// ranks_[i] is the number of elements in the set to which i belongs
} vertices;
void union_find::init(int n)
{
n_ = s_ = n;
for (int i = 0; i < n_; i++) {
representatives_[i] = i;
ranks_[i] = 1;
}
}
int union_find::find(int i) const
// return the representative of a set to which i belongs
{
return (representatives_[i] == i) ? i : find(representatives_[i]);
}
int union_find::do_union(int i, int j)
// generate the union of the two sets to which i and j belong and
// return the representative of the result set
{
int ri = find(i), rj = find(j);
if (ri == rj) // already in the same set
return -1;
s_--;
if (ranks_[ri] >= ranks_[rj]) {
ranks_[ri] += ranks_[rj];
representatives_[rj] = ri;
return ri;
}
else {
ranks_[rj] += ranks_[ri];
representatives_[ri] = rj;
return rj;
}
}
struct edge {
int u_, v_, weight_;
bool operator<(const edge& e) const {return weight_ < e.weight_;}
} edges[m_max];
int main()
{
int t;
scanf("%d", &t);
for (int tc = 1; tc <= t; tc++) {
int n, m, a;
scanf("%d %d %d", &n, &m, &a);
for (int i = 0; i < m; i++) {
int x, y, c;
scanf("%d %d %d", &edges[i].u_, &edges[i].v_, &edges[i].weight_);
edges[i].u_--; edges[i].v_--;
}
// apply Kruskal's minimum spanning tree algorithm
vertices.init(n);
sort(edges, edges + m); // sort the edges in ascending order of their weights
int cost = 0;
for (int i = 0; i < m && edges[i].weight_ < a; i++)
if (vertices.find(edges[i].u_) != vertices.find(edges[i].v_)) {
vertices.do_union(edges[i].u_, edges[i].v_);
cost += edges[i].weight_;
if (vertices.nr_sets() == 1)
break;
}
printf("Case #%d: %d %d\n",
tc, cost + a * vertices.nr_sets(), vertices.nr_sets());
}
return 0;
}
No comments:
Post a Comment