Ranking (as of 2014-08-02): 606 out of 1470
Language: C++
/* UVa 10330 - Power Transmission To build using Visucal Studio 2012: cl -EHsc UVa_10330_Power_Transmission.cpp */ #include <iostream> #include <vector> #include <queue> #include <algorithm> using namespace std; struct edge { int v; // neighboring vertex int capacity; // capacity of edge int flow; // flow through edge int residual; // residual capacity of edge edge(int _v, int _capacity, int _residual) : v(_v), capacity(_capacity), flow(0), residual(_residual) {} }; struct vertex_state { bool discovered; int parent; vertex_state() : discovered(false), parent(-1) {} }; void bfs(const vector< vector<edge> >& graph, int start, vector<vertex_state>& states) { queue<int> q; states[start].discovered = true; q.push(start); while (!q.empty()) { int u = q.front(); q.pop(); for (int i = 0; i < graph[u].size(); i++) { const edge& e = graph[u][i]; if (e.residual > 0 && !states[e.v].discovered) { states[e.v].discovered = true; states[e.v].parent = u; q.push(e.v); } } } } edge& find_edge(vector< vector<edge> >& graph, int u, int v) { int i; for (i = 0; i < graph[u].size(); i++) if (graph[u][i].v == v) break; return graph[u][i]; } int path_volume(vector< vector<edge> >& graph, int start, int end, const vector<vertex_state>& states) { if (states[end].parent == -1) return 0; edge& e = find_edge(graph, states[end].parent, end); if (start == states[end].parent) return e.residual; else return min(path_volume(graph, start, states[end].parent, states), e.residual); } void augment_path(vector< vector<edge> >& graph, int start, int end, const vector<vertex_state>& states, int volume) { if (start == end) return; edge& e = find_edge(graph, states[end].parent, end); if (e.flow < e.capacity) e.flow += volume; if (e.residual) e.residual -= volume; edge& r= find_edge(graph, end, states[end].parent); if (r.flow) r.flow -= volume; if (r.residual < r.capacity) r.residual += volume; augment_path(graph, start, states[end].parent, states, volume); } void netflow(vector< vector<edge> >& graph, int source, int sink) { while (true) { vector<vertex_state> states(graph.size()); bfs(graph, source, states); int volume = path_volume(graph, source, sink, states); // calculate the volume of augmenting path if (volume > 0) augment_path(graph, source, sink, states, volume); else break; } } int total_flow(const vector< vector<edge> >& graph, int source) { int flow = 0; const vector<edge>& edges = graph[source]; for (int i = 0, e = edges.size(); i < e; i++) flow += edges[i].flow; return flow; } int main() { int n; while (cin >> n) { int nr_vertices = 2 * n + 2; vector< vector<edge> > graph(nr_vertices); // indices are: // 0 - (2 * n - 1): regulator vertices, 2 * n: source vertex, // 2 * n + 1: sink vertex // Note that each regulators are treated as a pair of vertices. int source = 2 * n, sink = 2 * n + 1; vector<int> rcs(n); // regulator capacities for (int i = 0; i < n; i++) { // append the edges between each pair of regulator vertices cin >> rcs[i]; graph[2 * i].push_back(edge(2 * i + 1, rcs[i], rcs[i])); graph[2 * i + 1].push_back(edge(2 * i, rcs[i], 0)); } int m; cin >> m; while (m--) { // append the edges between regulators int i, j, c; cin >> i >> j >> c; i--; j--; graph[2 * i + 1].push_back(edge(2 * j, c, c)); graph[2 * j].push_back(edge(2 * i + 1, c , 0)); } int b, d; cin >> b >> d; while (b--) { // append the edges from the source to regulators int i; cin >> i; i--; graph[source].push_back(edge(2 * i, rcs[i], rcs[i])); graph[2 * i].push_back(edge(source, rcs[i], 0)); } while (d--) { // append the edges from regulators to the sink int i; cin >> i; i--; graph[2 * i + 1].push_back(edge(sink, rcs[i], rcs[i])); graph[sink].push_back(edge(2 * i + 1, rcs[i], 0)); } netflow(graph, source, sink); cout << total_flow(graph, source) << endl; } return 0; }
No comments:
Post a Comment