Ranking (as of 2014-12-17): 29 out of 408
Language: C++
/*
UVa 1235 - Anti Brute Force Lock
To build using Visual Studio 2012:
cl -EHsc -O2 UVa_1235_Anti_Brute_Force_Lock.cpp
*/
#include <algorithm>
#include <vector>
#include <set>
#include <limits>
#include <cstdio>
using namespace std;
const int nr_digits = 4, N_max = 500;
int keys[N_max + 1][nr_digits], edges[N_max + 1][N_max + 1];
int get_number_of_rolls(const int* ki, const int* kj)
{
int d = 0;
for (int k = 0; k < nr_digits; k++, ki++, kj++) {
int i = *ki, j = *kj;
if (i < j)
swap(i, j);
d += min(i - j, j + 10 - i);
}
return d;
}
struct distance_comparator {
const vector<int>& distances_;
distance_comparator(const vector<int>& distances) : distances_(distances) {}
bool operator() (int i, int j) const
{
return (distances_[i] != distances_[j]) ? distances_[i] < distances_[j] : i < j;
}
};
int mst_prim(int n, int s)
{
vector<bool> visited(n, false);
vector<int> distances(n, numeric_limits<int>::max());
distances[s] = 0;
int mst_distance = 0;
set<int, distance_comparator> pq(distances); // priority queue
if (!s) { // zero key (0000) is not in the unlock key list
int u = 0, d = numeric_limits<int>::max();
for (int v = 1; v < n; v++)
if (edges[s][v] < d) {
u = v; d = edges[s][v];
}
distances[u] = d;
pq.insert(u);
}
else
pq.insert(s);
while (!pq.empty()) {
int u = *pq.begin();
pq.erase(pq.begin());
visited[u] = true;
mst_distance += distances[u];
for (int v = 1; v < n; v++)
if (!visited[v] && edges[u][v] < distances[v]) {
pq.erase(v); // remove v if it has already been in the queue
distances[v] = edges[u][v];
pq.insert(v);
}
}
return mst_distance;
}
int main()
{
int T;
scanf("%d", &T);
while (T--) {
int N;
scanf("%d", &N);
int zero_key = 0;
for (int i = 1; i <= N; i++) {
char s[nr_digits + 1];
scanf("%s", s);
int k = 0;
for (int j = 0; j < nr_digits; j++) {
keys[i][j] = s[j] - '0';
k += keys[i][j];
}
if (!k)
zero_key = i;
}
for (int i = 0; i < N; i++)
for (int j = i + 1; j <= N; j++)
edges[i][j] = edges[j][i] = get_number_of_rolls(keys[i], keys[j]);
// apply Prim's minimum spanning tree algorithm
printf("%d\n", mst_prim(N + 1, zero_key));
}
return 0;
}
No comments:
Post a Comment