Ranking (as of 2015-02-01): 180 out of 431
Language: C++
/* UVa 10173 - Smallest Bounding Rectangle To build using Visual Studio 2012: cl -EHsc -O2 UVa_10173_Smallest_Bounding_Rectangle.cpp */ #include <iostream> #include <iomanip> #include <vector> #include <algorithm> #include <limits> #include <cmath> using namespace std; const double epsilon = numeric_limits<float>::epsilon(); struct point { double x, y; point() : x(0.0), y(0.0) {} point(double _x, double _y) : x(_x), y(_y) {} point(const point &p) : x(p.x), y(p.y) {} bool operator==(const point& p) const {return x == p.x && y == p.y;} }; ostream& operator<<(ostream& os, const point& p) { os << '(' << p.x << ", " << p.y << ')'; return os; } bool left_lower(const point& p1, const point& p2) { if (p1.x < p2.x) return true; else if (p1.x > p2.x) return false; else if (p1.y < p2.y) return true; else return false; } void sort_and_remove_duplicates(vector<point>& points, bool (*compare)(const point&, const point&) /* = left_lower */) { sort(points.begin(), points.end(), compare); // sort the points in leftmost-lowest order for (vector<point>::iterator i = points.begin(); i != points.end(); ) { // remove the duplicate points vector<point>::iterator j = i; j++; if (j != points.end() && *i == *j) i = points.erase(i); else i++; } } double signed_triangle_area(const point& a, const point& b, const point& c) { return (a.x * b.y - a.y * b.x + a.y * c.x - a.x * c.y + b.x * c.y - c.x * b.y) / 2.0; } bool collinear(const point& a, const point& b, const point& c) { return fabs(signed_triangle_area(a, b, c)) <= epsilon; } double euclidean_distance(const point& a, const point& b) { double dx = a.x - b.x, dy = a.y - b.y; return sqrt(dx * dx + dy * dy); } bool ccw(const point& a, const point& b, const point& c) { // see if the point c is to the left of a -> b (or, a - b - c are counterclockwise) return signed_triangle_area(a, b, c) > epsilon; } bool cw(const point& a, const point& b, const point& c) { // see if the point c is to the right of a -> b (or, a - b - c are clockwise) return signed_triangle_area(a, b, c) < -epsilon; } struct smaller_angle { const point& first; smaller_angle(const point& _first) : first(_first) {} bool operator() (const point& p1, const point& p2) const; }; bool smaller_angle::operator() (const point& p1, const point& p2) const { if (collinear(first, p1, p2)) return euclidean_distance(first, p1) <= euclidean_distance(first, p2); else return ccw(first, p1, p2); } int convex_hull(vector<point>& points, vector<point>& hull) { sort_and_remove_duplicates(points, left_lower); // sort the points in leftmost-lowest order vector<point>::iterator i = points.begin(); i++; sort(i, points.end(), smaller_angle(points[0])); // sort the second and later points in increasing angular order hull.resize(points.size()); hull[0] = points[0]; hull[1] = points[1]; int j = 1; for (int i = 2; i < points.size(); ) { if (cw(hull[j - 1], hull[j], points[i])) j--; // remove hulll[j] else { if (!collinear(hull[j - 1], hull[j], points[i])) j++; hull[j] = points[i++]; } } if (cw(hull[j - 1], hull[j], points[0])) ; else j++; hull.resize(j); #ifdef DEBUG for (int i = 0; i < hull.size(); i++) { if (i) cout << ' '; cout << hull[i]; } cout << endl; #endif return hull.size(); } bool point_in_hull(point& p, const vector<point>& hull) { int n = hull.size(); for (int i = 0; i < n; i++) if (cw(hull[i], hull[(i + 1) % n], p)) return false; return true; } double polygon_area(const vector<point>& polygon) { double area = 0.0; for (int i = 0; i < polygon.size(); i++) { int j = (i + 1) % polygon.size(); area += polygon[i].x * polygon[j].y - polygon[j].x * polygon[i].y; } return area / 2.0; } point rotate_point(const point& o, const point& p, double angle) // rotate p by angle around o { if (fabs(angle) < epsilon) angle = 0.0; double x = p.x - o.x, y = p.y - o.y; return point(o.x + x * cos(angle) - y * sin(angle), o.y + x * sin(angle) + y * cos(angle)); } double min_bounding_rectangle_area(const vector<point>& hull) { /* for each edge of the convex hull: compute the edge orientation. rotate the convex hull using this orientation. calculate the bounding rectangle area with min/max of x/y of the rotated convex hull. */ int n = hull.size(); double min_area = numeric_limits<double>::max(); for (int i = 0; i < n; i++) { int j = (i + 1) % n; double angle = atan2(hull[j].y - hull[i].y, hull[j].x - hull[i].x); double min_x = hull[i].x, min_y = hull[i].y, max_x = hull[i].x, max_y = hull[i].y; for ( ; j != i; j = (j + 1) % n) { point p = rotate_point(hull[i], hull[j], -angle); min_x = min(min_x, p.x); min_y = min(min_y, p.y); max_x = max(max_x, p.x); max_y = max(max_y, p.y); } #ifdef DEBUG cout << angle << ' ' << point(min_x, min_y) << ' ' << point(max_x, max_y) << endl; #endif min_area = min(min_area, (max_x - min_x) * (max_y - min_y)); } return min_area; } int main() { const int n_max = 1000; vector<point> points(n_max); while (true) { int n; cin >> n; if (!n) break; points.resize(n); for (int i = 0; i < n; i++) cin >> points[i].x >> points[i].y; double area = 0.0; if (n > 2) { vector<point> hull(n); convex_hull(points, hull); area = min_bounding_rectangle_area(hull); } cout << fixed << setprecision(4) << area << endl; } return 0; }
No comments:
Post a Comment