Run Time: 0.020
Ranking (as of 2016-06-03): 20 out of 443
Language: C++
/*
UVa 10511 - Councilling
To build using Visual Studio 2012:
cl -EHsc -O2 UVa_10511_Councilling.cpp
*/
#include <algorithm>
#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <map>
#include <queue>
using namespace std;
struct edge {
int v; // neighboring vertex
int capacity; // capacity of edge
int flow; // flow through edge
int residual; // residual capacity of edge
edge(int _v, int _capacity, int _residual)
: v(_v), capacity(_capacity), flow(0), residual(_residual) {}
};
struct vertex_state {
bool discovered;
int parent;
vertex_state() : discovered(false), parent(-1) {}
};
void bfs(const vector< vector<edge> >& graph, int start,
vector<vertex_state>& states)
{
queue<int> q;
states[start].discovered = true;
q.push(start);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = 0; i < graph[u].size(); i++) {
const edge& e = graph[u][i];
if (e.residual > 0 && !states[e.v].discovered) {
states[e.v].discovered = true;
states[e.v].parent = u;
q.push(e.v);
}
}
}
}
edge& find_edge(vector< vector<edge> >& graph, int u, int v)
{
int i;
for (i = 0; i < graph[u].size(); i++)
if (graph[u][i].v == v)
break;
return graph[u][i];
}
int path_volume(vector< vector<edge> >& graph, int start, int end,
const vector<vertex_state>& states)
{
if (states[end].parent == -1)
return 0;
edge& e = find_edge(graph, states[end].parent, end);
if (start == states[end].parent)
return e.residual;
else
return min(path_volume(graph, start, states[end].parent, states), e.residual);
}
void augment_path(vector< vector<edge> >& graph, int start, int end,
const vector<vertex_state>& states, int volume)
{
if (start == end)
return;
edge& e = find_edge(graph, states[end].parent, end);
if (e.flow < e.capacity)
e.flow += volume;
if (e.residual)
e.residual -= volume;
edge& r= find_edge(graph, end, states[end].parent);
if (r.flow)
r.flow -= volume;
if (r.residual < r.capacity)
r.residual += volume;
augment_path(graph, start, states[end].parent, states, volume);
}
void netflow(vector< vector<edge> >& graph, int source, int sink)
{
while (true) {
vector<vertex_state> states(graph.size());
bfs(graph, source, states);
int volume = path_volume(graph, source, sink, states);
// calculate the volume of augmenting path
if (volume > 0)
augment_path(graph, source, sink, states, volume);
else
break;
}
}
int total_flow(const vector< vector<edge> >& graph, int source)
{
int flow = 0;
const vector<edge>& edges = graph[source];
for (int i = 0, e = edges.size(); i < e; i++)
flow += edges[i].flow;
return flow;
}
void add_edge(int u, int v, int c, vector< vector<edge> >& graph)
{
graph[u].push_back(edge(v, c, c));
graph[v].push_back(edge(u, c, 0));
}
struct resident {
string s_;
int party_;
vector<int> clubs_;
};
int main()
{
string line;
getline(cin, line);
istringstream iss(line);
int T;
iss >> T;
iss.clear();
getline(cin, line);
while (T--) {
vector<resident> residents;
map<string, int> parties, clubs;
while (true) {
getline(cin, line);
if (line.empty())
break;
iss.str(line);
residents.push_back(resident());
resident& r = residents.back();
iss >> r.s_;
string s;
iss >> s;
parties.insert(make_pair(s, static_cast<int>(parties.size())));
r.party_ = parties[s];
while (iss >> s) {
clubs.insert(make_pair(s, static_cast<int>(clubs.size())));
r.clubs_.push_back(clubs[s]);
}
iss.clear();
}
int nr_residents = static_cast<int>(residents.size()),
nr_clubs = static_cast<int>(clubs.size()),
nr_parties = static_cast<int>(parties.size());
int nr_vertices = nr_clubs + nr_residents + nr_parties + 2,
source = nr_clubs + nr_residents + nr_parties,
sink = nr_clubs + nr_residents + nr_parties + 1;
// indices are:
// 0 - (nr_clubs - 1) : club vertices,
// clubs + (nr_clubs + nr_residents - 1): resident vertices,
// (nr_clubs + nr_residents + nr_parties - 1): party vertices
vector< vector<edge> > graph(nr_vertices);
// append the edges from the source to club vertices
for (int i = 0; i < nr_clubs; i++)
add_edge(source, i, 1, graph);
for (int i = 0; i < nr_residents; i++) {
const resident& r = residents[i];
// append the edges from the club vertices to the resident vertices
for (int j = 0, je = static_cast<int>(r.clubs_.size()); j < je; j++)
add_edge(r.clubs_[j], nr_clubs + i, 1, graph);
// append the edges from the resident vertices to the party vertices
add_edge(nr_clubs + i, nr_clubs + nr_residents + r.party_, 1, graph);
}
// append the edgs from the party vertices to the sink
for (int i = 0, c = (nr_clubs - 1) / 2; i < nr_parties; i++)
add_edge(nr_clubs + nr_residents + i, sink, c, graph);
netflow(graph, source, sink); // apply Ford-Fulkerson's augmenting path algorithm
if (total_flow(graph, source) == nr_clubs) {
vector<string> club_indices(nr_clubs);
for (map<string, int>::const_iterator ci = clubs.begin(), ce = clubs.end();
ci != ce; ++ci)
club_indices[ci->second] = ci->first;
for (int i = 0; i < nr_clubs; i++) {
const vector<edge>& edges = graph[i];
for (int j = 0, je = static_cast<int>(edges.size()); j < je; j++)
if (edges[j].flow) {
cout << residents[edges[j].v - nr_clubs].s_ << ' ' << club_indices[i] << endl;
break;
}
}
}
else
puts("Impossible.");
if (T)
putchar('\n');
}
return 0;
}
No comments:
Post a Comment