Ranking (as of 2013-06-15): 227 out of 1619
Language: C++
/*
UVa 10369 - Arctic Network
To build using Visual Studio 2008:
cl -EHsc -O2 arctic_network.cpp
*/
#include <iostream>
#include <vector>
#include <utility>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
class union_find {
public:
union_find(int _n);
~union_find() {}
int find(int i) const;
int do_union(int i, int j);
// generate the union of the two sets to which i and j belong and
// return the representative of the result set
int nr_sets() const {return s_;}
private:
int n_; // number of elements
int s_; // number of sets
vector<int> representatives_;
// representatives[i] is the representative of a set to which i belongs
vector<int> ranks_;
// ranks_[i] is the number of elements in the set to which i belongs
};
union_find::union_find(int n)
: n_(n), s_(n), representatives_(n), ranks_(n, 1)
{
for (int i = 0; i < n_; i++)
representatives_[i] = i;
}
int union_find::find(int i) const
// return the representative of a set to which i belongs
{
return (representatives_[i] == i) ? i : find(representatives_[i]);
}
int union_find::do_union(int i, int j)
// generate the union of the two sets to which i and j belong and
// return the representative of the result set
{
int ri = find(i), rj = find(j);
if (ri == rj) // already in the same set
return -1;
s_--;
if (ranks_[ri] >= ranks_[rj]) {
ranks_[ri] += ranks_[rj];
representatives_[rj] = ri;
return ri;
}
else {
ranks_[rj] += ranks_[ri];
representatives_[ri] = rj;
return rj;
}
}
struct edge {
int u_, v_;
double weight_;
bool operator<(const edge& e) const {return weight_ < e.weight_;}
};
double euclidean_distance(const pair<int, int>& p, const pair<int,
int>& q)
{
double dx = static_cast<double>(p.first - q.first),
dy = static_cast<double>(p.second - q.second);
return sqrt(dx * dx + dy * dy);
}
int main()
{
int n;
cin >> n;
while (n--) {
int s, p;
cin >> s >> p;
vector< pair<int, int> > vertices(p);
for (int i = 0; i < p; i++)
cin >> vertices[i].first >> vertices[i].second;
int nr_edges = p * (p - 1) / 2; // C(p, 2)
vector<edge> edges(nr_edges);
for (int i = 0, j = 0; j < p - 1; j++)
for (int k = j + 1; k < p; k++) {
edge& e = edges[i++];
e.u_ = j; e.v_ = k;
e.weight_ = euclidean_distance(vertices[j], vertices[k]);
}
sort(edges.begin(), edges.end());
union_find forests(p);
double min_d = 0.0;
// using Kruskal algorithm, find "Minimum Spanning Forest"
// in the graph that has S components left
for (int i = 0; i < nr_edges; i++)
if (forests.do_union(edges[i].u_, edges[i].v_) != -1) {
min_d = max(min_d, edges[i].weight_);
if (forests.nr_sets() == s)
break;
}
printf("%.2f\n", min_d);
}
return 0;
}
No comments:
Post a Comment