Ranking (as of 2013-06-13): 239 out of 1168
Language: C++
The priority queue implementation (the functions prefixed with "pqueue" and their associated definitions, etc. that are surrounded by the below 'extern "C"' block) is based on the code from https://github.com/vy/libpqueue and is licensed under the Apache 2.0 license:
  Copyright 2010 Volkan Yazici
  Copyright 2006-2010 The Apache Software Foundation
/* UVa 10801 - Lift Hopping To build using Visucal Studio 2008: cl -EHsc lift_hopping.cpp */ #include <iostream> #include <string> #include <sstream> #include <vector> #include <limits> #include <cstdlib> using namespace std; #ifdef __cplusplus extern "C" { #endif /** priority data type */ typedef int pqueue_pri_t; /** callback functions to get/set/compare the priority of an element */ typedef pqueue_pri_t (*pqueue_get_pri_f)(void *a); typedef void (*pqueue_set_pri_f)(void *a, pqueue_pri_t pri); typedef int (*pqueue_cmp_pri_f)(pqueue_pri_t next, pqueue_pri_t curr); /** callback functions to get/set the position of an element */ typedef size_t (*pqueue_get_pos_f)(void *a); typedef void (*pqueue_set_pos_f)(void *a, size_t pos); /** debug callback function to print a entry */ typedef void (*pqueue_print_entry_f)(FILE *out, void *a); /** the priority queue handle */ typedef struct pqueue_t { size_t size; size_t avail; size_t step; pqueue_cmp_pri_f cmppri; pqueue_get_pri_f getpri; pqueue_set_pri_f setpri; pqueue_get_pos_f getpos; pqueue_set_pos_f setpos; void **d; } pqueue_t; #define left(i) ((i) << 1) #define right(i) (((i) << 1) + 1) #define parent(i) ((i) >> 1) pqueue_t * pqueue_init(size_t n, pqueue_cmp_pri_f cmppri, pqueue_get_pri_f getpri, pqueue_set_pri_f setpri, pqueue_get_pos_f getpos, pqueue_set_pos_f setpos) { pqueue_t *q; if (!(q = (pqueue_t *)malloc(sizeof(pqueue_t)))) return NULL; /* Need to allocate n+1 elements since element 0 isn't used. */ if (!(q->d = (void **)(malloc((n + 1) * sizeof(void *))))) { free(q); return NULL; } q->size = 1; q->avail = q->step = (n+1); /* see comment above about n+1 */ q->cmppri = cmppri; q->setpri = setpri; q->getpri = getpri; q->getpos = getpos; q->setpos = setpos; return q; } void pqueue_free(pqueue_t *q) { free(q->d); free(q); } size_t pqueue_size(pqueue_t *q) { /* queue element 0 exists but doesn't count since it isn't used. */ return (q->size - 1); } static void bubble_up(pqueue_t *q, size_t i) { size_t parent_node; void *moving_node = q->d[i]; pqueue_pri_t moving_pri = q->getpri(moving_node); for (parent_node = parent(i); ((i > 1) && q->cmppri(q->getpri(q->d[parent_node]), moving_pri)); i = parent_node, parent_node = parent(i)) { q->d[i] = q->d[parent_node]; q->setpos(q->d[i], i); } q->d[i] = moving_node; q->setpos(moving_node, i); } static size_t maxchild(pqueue_t *q, size_t i) { size_t child_node = left(i); if (child_node >= q->size) return 0; if ((child_node+1) < q->size && q->cmppri(q->getpri(q->d[child_node]), q->getpri(q->d[child_node+1]))) child_node++; /* use right child instead of left */ return child_node; } static void percolate_down(pqueue_t *q, size_t i) { size_t child_node; void *moving_node = q->d[i]; pqueue_pri_t moving_pri = q->getpri(moving_node); while ((child_node = maxchild(q, i)) && q->cmppri(moving_pri, q->getpri(q->d[child_node]))) { q->d[i] = q->d[child_node]; q->setpos(q->d[i], i); i = child_node; } q->d[i] = moving_node; q->setpos(moving_node, i); } int pqueue_insert(pqueue_t *q, void *d) { void *tmp; size_t i; size_t newsize; if (!q) return 1; /* allocate more memory if necessary */ if (q->size >= q->avail) { newsize = q->size + q->step; if (!(tmp = realloc(q->d, sizeof(void *) * newsize))) return 1; q->d = (void **)tmp; q->avail = newsize; } /* insert item */ i = q->size++; q->d[i] = d; bubble_up(q, i); return 0; } void pqueue_change_priority(pqueue_t *q, pqueue_pri_t new_pri, void *d) { size_t posn; pqueue_pri_t old_pri = q->getpri(d); q->setpri(d, new_pri); posn = q->getpos(d); if (q->cmppri(old_pri, new_pri)) bubble_up(q, posn); else percolate_down(q, posn); } void * pqueue_pop(pqueue_t *q) { void *head; if (!q || q->size == 1) return NULL; head = q->d[1]; q->d[1] = q->d[--q->size]; percolate_down(q, 1); return head; } #ifdef __cplusplus } #endif struct edge { int v; // destination vertex int weight; // waiting time or travelling time edge() : v(-1), weight(-1) {} edge(int _v, int _weight) : v(_v), weight(_weight) {} }; struct vertex_distance { int v; // vertex int distance; // distance size_t pqueue_pos; // used internally by libpqueue vertex_distance() : v(-1), distance(-1), pqueue_pos(-1) {} vertex_distance(int _v, int _distance) : v(_v), distance(_distance), pqueue_pos(-1) {} static int get_distance(void* vd); static void set_distance(void* vd, int d); static int compare_distance(int next, int current); static size_t get_position(void* vd); static void set_position(void *vd, size_t position); }; int vertex_distance::get_distance(void* vd) { return reinterpret_cast<vertex_distance*>(vd)->distance; } void vertex_distance::set_distance(void* vd, int d) { reinterpret_cast<vertex_distance*>(vd)->distance = d; } int vertex_distance::compare_distance(int next, int current) { return current < next; } size_t vertex_distance::get_position(void* vd) { return reinterpret_cast<vertex_distance*>(vd)->pqueue_pos; } void vertex_distance::set_position(void *vd, size_t position) { reinterpret_cast<vertex_distance*>(vd)->pqueue_pos = position; } bool shortest_path(int nr_vertices, int start, int end, const vector< vector<edge> >& edges, vector<vertex_distance>& distances, vector<int>& parent_vertices) { for (int i = 0; i < nr_vertices; i++) distances[i] = vertex_distance(i, ((i != start) ? numeric_limits<int>::max() : 0)); // queue items (vertex_distance instances) are arranged in ascending order of // their distances from the start vertex pqueue_t* queue = pqueue_init(distances.size(), vertex_distance::compare_distance, vertex_distance::get_distance, vertex_distance::set_distance, vertex_distance::get_position, vertex_distance::set_position); for (int i = 0; i < nr_vertices; i++) pqueue_insert(queue, &distances[i]); bool successful = false; while (pqueue_size(queue)) { vertex_distance* vd = reinterpret_cast<vertex_distance*>(pqueue_pop(queue)); vd->pqueue_pos = -1; int u = vd->v; if (u == end) { successful = true; break; } int d = distances[u].distance; if (d == numeric_limits<int>::max()) break; for (size_t i = 0; i < edges[u].size(); i++) { const edge& e = edges[u][i]; if (distances[e.v].pqueue_pos != -1 // an vertex_distance instance for t.route is still in queue && d + e.weight < distances[e.v].distance) { parent_vertices[e.v] = u; pqueue_change_priority(queue, d + e.weight, &distances[e.v]); } } } return successful; } int main() { const int nr_floors = 100, s_wait = 60; string line; istringstream iss; while (getline(cin, line)) { iss.str(line); int n, k; iss >> n >> k; iss.clear(); getline(cin, line); iss.str(line); vector<int> speeds(n); for (int i = 0; i < n; i++) iss >> speeds[i]; iss.clear(); vector< vector<edge> > edges(nr_floors); // edges[i] is the vector of edges from the i-th vertex for (int i = 0; i < n; i++) { getline(cin, line); iss.str(line); vector<int> floors(nr_floors); int j = 0; while (iss >> floors[j]) j++; for (int fi = 0; fi < j - 1; fi++) { int fli = floors[fi]; for (int fj = fi + 1; fj < j; fj++) { int flj = floors[fj]; int s = speeds[i] * abs(flj - fli) + s_wait; edges[fli].push_back(edge(flj, s)); edges[flj].push_back(edge(fli, s)); } } iss.clear(); } vector<vertex_distance> distances(nr_floors); vector<int> parent_vertices(nr_floors); // apply Dijkstra's shortest path algorithm bool successful = shortest_path(nr_floors, 0, k, edges, distances, parent_vertices); if (successful) cout << ((k) ? distances[k].distance - s_wait : 0) << endl; else cout << "IMPOSSIBLE\n"; } return 0; }
No comments:
Post a Comment