Run Time: 0.049
Ranking (as of 2016-03-25): 16 out of 573
Language: C++
/*
UVa 11327 - Enumerating Rational Numbers
To build using Visual Studio 2012:
cl -EHsc -O2 UVa_11327_Enumerating_Rational_Numbers.cpp
*/
#include <algorithm>
#include <iterator>
#include <cstdio>
#include <cmath>
#ifdef __ELAPSED_TIME__
#include <ctime>
#endif
using namespace std;
const int n_max = 200000;
bool not_primes[n_max + 1]; // not_primes[i] is true if i is not a prime
int phis[n_max + 1]; // phis[i] is Euler's totient (or phi) function's values, i.e.,
// number the positive integers up to a given number i that are relatively prime to i
long long sum_of_phis[n_max + 1];
// sum_of_phits[i] is the sum of phis[j] where j is from 0 up to i
void sieve_of_eratosthenes()
{
not_primes[0] = not_primes[1] = true;
for (int i = 2, e = static_cast<int>(sqrt(static_cast<double>(n_max))); i <= e; i++)
if (!not_primes[i]) {
for (int j = i * i; j <= n_max; j += i)
not_primes[j] = true;
}
}
int gcd(int x, int y)
{
if (x < y)
return gcd(y, x);
else
return y == 0 ? x : gcd(y, x % y);
}
int main()
{
#ifdef __ELAPSED_TIME__
clock_t start = clock();
#endif
sieve_of_eratosthenes();
phis[0] = 1;
for (int i = 1; i <= n_max; i++)
phis[i] = i;
for (int i = 1; i <= n_max; i++)
if (!not_primes[i])
for (int j = i; j <= n_max; j += i)
phis[j] -= phis[j] / i;
sum_of_phis[0] = 1;
for (int i = 1; i <= n_max; i++)
sum_of_phis[i] = sum_of_phis[i - 1] + phis[i];
#ifdef DEBUG
printf("%lld\n", sum_of_phis[n_max]);
#endif
while (true) {
long long k;
scanf("%lld", &k);
if (!k)
break;
int d = distance(sum_of_phis, lower_bound(sum_of_phis, sum_of_phis + n_max, k)), n = 0;
if (d) {
k -= sum_of_phis[d - 1];
for (n++; ; n++)
if (gcd(n, d) == 1 && !--k)
break;
}
else
d = 1;
printf("%d/%d\n", n, d);
}
#ifdef __ELAPSED_TIME__
fprintf(stderr, "elapsed time = %lf sec.\n",
static_cast<double>(clock() - start) / CLOCKS_PER_SEC);
#endif
return 0;
}
No comments:
Post a Comment