Ranking (as of 2013-01-27): 486
Language: C++
/* UVa 10080 - Gopher II To build using Visual Studio 2008: cl -EHsc -O2 gopher_II.cpp */ #include <iostream> #include <vector> #include <queue> #include <utility> #include <algorithm> #include <cmath> using namespace std; const int nr_gophers_max = 100, nr_holes_max = 100; pair<double, double> gophers[nr_gophers_max], holes[nr_holes_max]; double euclidean_distance(const pair<double, double>& p, const pair<double, double>& q) { double dx = p.first - q.first, dy = p.second - q.second; return sqrt(dx * dx + dy * dy); } struct edge { int v; // neighboring vertex int capacity; // capacity of edge int flow; // flow through edge int residual; // residual capacity of edge edge(int _v, int _capacity, int _residual) : v(_v), capacity(_capacity), flow(0), residual(_residual) {} }; struct vertex_state { bool discovered; int parent; vertex_state() : discovered(false), parent(-1) {} }; void bfs(const vector< vector<edge> >& graph, int start, vector<vertex_state>& states) { queue<int> q; states[start].discovered = true; q.push(start); while (!q.empty()) { int u = q.front(); q.pop(); for (int i = 0; i < graph[u].size(); i++) { const edge& e = graph[u][i]; if (e.residual > 0 && !states[e.v].discovered) { states[e.v].discovered = true; states[e.v].parent = u; q.push(e.v); } } } } edge& find_edge(vector< vector<edge> >& graph, int u, int v) { int i; for (i = 0; i < graph[u].size(); i++) if (graph[u][i].v == v) break; return graph[u][i]; } int path_volume(vector< vector<edge> >& graph, int start, int end, const vector<vertex_state>& states) { if (states[end].parent == -1) return 0; edge& e = find_edge(graph, states[end].parent, end); if (start == states[end].parent) return e.residual; else return min(path_volume(graph, start, states[end].parent, states), e.residual); } void augment_path(vector< vector<edge> >& graph, int start, int end, const vector<vertex_state>& states, int volume) { if (start == end) return; edge& e = find_edge(graph, states[end].parent, end); if (e.flow < e.capacity) e.flow += volume; if (e.residual) e.residual -= volume; edge& r= find_edge(graph, end, states[end].parent); if (r.flow) r.flow -= volume; if (r.residual < r.capacity) r.residual += volume; augment_path(graph, start, states[end].parent, states, volume); } void netflow(vector< vector<edge> >& graph, int source, int sink) { while (true) { vector<vertex_state> states(graph.size()); bfs(graph, source, states); int volume = path_volume(graph, source, sink, states); // calculate the volume of augmenting path if (volume > 0) augment_path(graph, source, sink, states, volume); else break; } } int total_flow(const vector< vector<edge> >& graph, int source) { int flow = 0; const vector<edge>& edges = graph[source]; for (int i = 0, e = edges.size(); i < e; i++) flow += edges[i].flow; return flow; } int main() { int nr_gophers, nr_holes; double seconds, velocity; while (cin >> nr_gophers >> nr_holes >> seconds >> velocity) { for (int i = 0; i < nr_gophers; i++) cin >> gophers[i].first >> gophers[i].second; for (int i = 0; i < nr_holes; i++) cin >> holes[i].first >> holes[i].second; int nr_vertices = nr_gophers + nr_holes + 2; vector< vector<edge> > graph(nr_vertices); // indices are: // 0 - (nr_gophers - 1): gopher vertices, // nr_gophers - (nr_gophers + nr_holes - 1): hole vertices, // (nr_gophers + nr_holes): source vertex, // (nr_gophers + nr_holes + 1): sink vertex int source = nr_gophers + nr_holes, sink = nr_gophers + nr_holes + 1; double d = velocity * seconds; for (int i = 0; i < nr_gophers; i++) { // append the edges between the source and gopher vertices graph[source].push_back(edge(i, 1, 1)); graph[i].push_back(edge(source, 1, 0)); for (int j = 0; j < nr_holes; j++) if (euclidean_distance(gophers[i], holes[j]) <= d) { // append the edges between gopher vertices and hole vertices // if a gopher can reach the hole in the specified time graph[i].push_back(edge(nr_gophers + j, 1, 1)); graph[nr_gophers + j].push_back(edge(i, 1, 0)); } } for (int i = nr_gophers; i < nr_gophers + nr_holes; i++) { // append the edges between hole vertices and the sink graph[i].push_back(edge(sink, 1, 1)); graph[sink].push_back(edge(i, 1, 0)); } netflow(graph, source, sink); // apply Ford-Fulkerson's augmenting path algorithm cout << nr_gophers - total_flow(graph, source) << endl; } return 0; }
No comments:
Post a Comment