Ranking (as of 2013-01-27): 486
Language: C++
/*
UVa 10080 - Gopher II
To build using Visual Studio 2008:
cl -EHsc -O2 gopher_II.cpp
*/
#include <iostream>
#include <vector>
#include <queue>
#include <utility>
#include <algorithm>
#include <cmath>
using namespace std;
const int nr_gophers_max = 100, nr_holes_max = 100;
pair<double, double> gophers[nr_gophers_max], holes[nr_holes_max];
double euclidean_distance(const pair<double, double>& p,
const pair<double, double>& q)
{
double dx = p.first - q.first, dy = p.second - q.second;
return sqrt(dx * dx + dy * dy);
}
struct edge {
int v; // neighboring vertex
int capacity; // capacity of edge
int flow; // flow through edge
int residual; // residual capacity of edge
edge(int _v, int _capacity, int _residual) : v(_v), capacity(_capacity),
flow(0), residual(_residual) {}
};
struct vertex_state {
bool discovered;
int parent;
vertex_state() : discovered(false), parent(-1) {}
};
void bfs(const vector< vector<edge> >& graph,
int start, vector<vertex_state>& states)
{
queue<int> q;
states[start].discovered = true;
q.push(start);
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = 0; i < graph[u].size(); i++) {
const edge& e = graph[u][i];
if (e.residual > 0 && !states[e.v].discovered) {
states[e.v].discovered = true;
states[e.v].parent = u;
q.push(e.v);
}
}
}
}
edge& find_edge(vector< vector<edge> >& graph, int u, int v)
{
int i;
for (i = 0; i < graph[u].size(); i++)
if (graph[u][i].v == v)
break;
return graph[u][i];
}
int path_volume(vector< vector<edge> >& graph,
int start, int end, const vector<vertex_state>& states)
{
if (states[end].parent == -1)
return 0;
edge& e = find_edge(graph, states[end].parent, end);
if (start == states[end].parent)
return e.residual;
else
return min(path_volume(graph, start, states[end].parent, states),
e.residual);
}
void augment_path(vector< vector<edge> >& graph,
int start, int end, const vector<vertex_state>& states, int volume)
{
if (start == end)
return;
edge& e = find_edge(graph, states[end].parent, end);
if (e.flow < e.capacity)
e.flow += volume;
if (e.residual)
e.residual -= volume;
edge& r= find_edge(graph, end, states[end].parent);
if (r.flow)
r.flow -= volume;
if (r.residual < r.capacity)
r.residual += volume;
augment_path(graph, start, states[end].parent, states, volume);
}
void netflow(vector< vector<edge> >& graph, int source, int sink)
{
while (true) {
vector<vertex_state> states(graph.size());
bfs(graph, source, states);
int volume = path_volume(graph, source, sink, states);
// calculate the volume of augmenting path
if (volume > 0)
augment_path(graph, source, sink, states, volume);
else
break;
}
}
int total_flow(const vector< vector<edge> >& graph, int source)
{
int flow = 0;
const vector<edge>& edges = graph[source];
for (int i = 0, e = edges.size(); i < e; i++)
flow += edges[i].flow;
return flow;
}
int main()
{
int nr_gophers, nr_holes;
double seconds, velocity;
while (cin >> nr_gophers >> nr_holes >>
seconds >> velocity) {
for (int i = 0; i < nr_gophers; i++)
cin >> gophers[i].first >> gophers[i].second;
for (int i = 0; i < nr_holes; i++)
cin >> holes[i].first >> holes[i].second;
int nr_vertices = nr_gophers + nr_holes + 2;
vector< vector<edge> > graph(nr_vertices);
// indices are:
// 0 - (nr_gophers - 1): gopher vertices,
// nr_gophers - (nr_gophers + nr_holes - 1): hole vertices,
// (nr_gophers + nr_holes): source vertex,
// (nr_gophers + nr_holes + 1): sink vertex
int source = nr_gophers + nr_holes, sink = nr_gophers + nr_holes + 1;
double d = velocity * seconds;
for (int i = 0; i < nr_gophers; i++) {
// append the edges between the source and gopher vertices
graph[source].push_back(edge(i, 1, 1));
graph[i].push_back(edge(source, 1, 0));
for (int j = 0; j < nr_holes; j++)
if (euclidean_distance(gophers[i], holes[j]) <= d) {
// append the edges between gopher vertices and hole vertices
// if a gopher can reach the hole in the specified time
graph[i].push_back(edge(nr_gophers + j, 1, 1));
graph[nr_gophers + j].push_back(edge(i, 1, 0));
}
}
for (int i = nr_gophers; i < nr_gophers + nr_holes; i++) {
// append the edges between hole vertices and the sink
graph[i].push_back(edge(sink, 1, 1));
graph[sink].push_back(edge(i, 1, 0));
}
netflow(graph, source, sink);
// apply Ford-Fulkerson's augmenting path algorithm
cout << nr_gophers - total_flow(graph, source) << endl;
}
return 0;
}
No comments:
Post a Comment